
The Difference between VM &
Docker-based Pipelines

GUY SALTON

Guy Salton

Solution Architect

guy.salton@codefresh.io

Agenda

1. Docker usage in Continuous Integration

2. Pre-install vs Dockerizing build tools as

pipeline steps

3. Upgrading build tools to new versions

4. Mixing multiple versions of the same tool in

the same pipeline

5. Creating new pipeline steps on the fly

● Demos for everything using Codefresh and

Jenkins

https://github.com/containers101/
docker-based-pipelines-webinar/

guy.salton@codefresh.io

Theory: Docker-based Pipelines

guy.salton@codefresh.io

“Docker-based” means 2 different things:

Using Docker as a
deployment package
(this is what most people think)

Using Docker for build Tooling
(this is not what most people think)

90% of cases: “We have migrated
to Docker in production”

guy.salton@codefresh.io

Before Docker – The Dark Ages

guy.salton@codefresh.io

Docker-based Deployments - Better

guy.salton@codefresh.io

Adding Docker-based Build Pipelines

guy.salton@codefresh.io

Today’s Talk

CI/CD Runtime
guy.salton@codefresh.io

VM versus Docker
Before:

● Tools are static

● Used for all pipelines

After:

● Tools are dynamic

● Isolated to each pipeline

Pipeline
Java6

Docker Go

Docker

Pipeline

Node9

Docker

Python2

Docker

Pipeline

Python3

Docker

Node11

Docker

guy.salton@codefresh.io

Resources for Docker as Deployment artifact

guy.salton@codefresh.io

Docker CI/CD - Benefits

guy.salton@codefresh.io

VM-Based Pipelines

● Multiple tools on each node

● Very hard to manage

●Often nodes had different versions of the same
tool

●Developers had to choose the correct machine
for their build

guy.salton@codefresh.io

Build farm after Docker

● Only Docker is installed

● Very easy to manage

●All nodes are exactly the same

●These nodes are often a Kubernetes cluster

guy.salton@codefresh.io

Using Docker in Continuous Integration

● EVERY build tool is placed in a Docker

container

● The build node has only Docker installed

and nothing else

● A pipeline is a series of commands that run

inside a Docker context

● After each build the node reverts back to its

original state

● Developers don’t care about nodes

guy.salton@codefresh.io

Docker images are everywhere

● They are reusable and shareable

● No need to reinvent the wheel (e.g. Terraform in Docker)

● Private docker images can be created with your team in mind

guy.salton@codefresh.io

Container per build step

● Codefresh requires ALL tools to be dockerized

● You can use any public or private Docker image

as tooling

● Each build step has a Docker image as context

● Pipelines are described in declarative YAML

guy.salton@codefresh.io

About Codefresh

● Docker based CI/CD solution

● Each build step is a Docker image

● Native support for Docker, Helm,
Kubernetes deployments

● Includes built-in Docker registry and
Helm repository

● 30,000+ users

guy.salton@codefresh.io

Demo 1:
 Python/Node application

https://github.com/containers101/docker-based-pipelines-webinar/tree/master/01_simple_pipeline

guy.salton@codefresh.io

Traditional VM based problems

guy.salton@codefresh.io

VM based Platform Questions:

● Do you support my favorite version of

Node/Java/Go/Ruby/Python?

● Do you support maven, yarn, gulp, sbt, gradle, rake?

● Can I run Ansible? Terraform? GCloud? AWS CLI?

● Can I run Kubectl? Helm? Draft?

guy.salton@codefresh.io

VM based CI/CD Platforms

guy.salton@codefresh.io

Demo 2:
 Adding Go and AWS CLI

https://github.com/containers101/docker-based-pipelines-webinar/tree/master/02_aws_cli

guy.salton@codefresh.io

Does Codefresh Support…

● Node 10?
● Perl 6?
● Python2?
● Gradle?
● Vault?
● AWS cli?
● Sonar?
● Findbugs?
● Selenium?
● Snyk?
● Clair?

guy.salton@codefresh.io

Does Codefresh Support…

● Node 10?
● Perl 6?
● Python2?
● Gradle?
● Vault?
● AWS cli?
● Sonar?
● Findbugs?
● Selenium?
● Snyk?
● Clair?

YES!
Because there is a Docker

image for it

guy.salton@codefresh.io

Codefresh Pipelines are Future Proof

● You can use ANY existing Docker image from Dockerhub or

any other Registry

● Every time a new tool comes out, it can be used right away if

packaged in a Docker image

guy.salton@codefresh.io

Tool Upgrades and Version
Clashes

guy.salton@codefresh.io

Updating a Tool in a VM based Pipeline

guy.salton@codefresh.io

VM based CI Solutions

guy.salton@codefresh.io

Demo:
Updating Python to 3.7

https://github.com/containers101/docker-based-pipelines-webinar/tree/master/02_aws_cli

guy.salton@codefresh.io

Using Tools from Different Versions

● Version clashes are a huge pain for both developers and operators

● Legacy projects need to still use old version

● Using different versions in the same pipeline is almost impossible

● Developers want to use latest version of tool, traditional CI/CD

platforms may not be able to keep up

guy.salton@codefresh.io

Wasting Effort on “Version Managers”

guy.salton@codefresh.io

Wasting Effort on “Version Managers”

● They allow developers to switch between different versions

● Tied to a specific technology/programming language

● Require they own installation/ maintenance

● Must be upgraded for new versions

guy.salton@codefresh.io

The Problem with Python

● Different python versions are a
notorious problem

● Until recently you needed
dedicated support from your CI
platform

● What happens if I want to test
Python 2.5?

guy.salton@codefresh.io

Replacing “version managers”
with Docker

● Works for any language/framework

● Already installed on the build node

● Its own version is independent from
the tools

● Can use any public and private image

guy.salton@codefresh.io

Codefresh “Python Support”

● We support EVERY container
ever made

● We support EVERY container
 that you can make in the future

guy.salton@codefresh.io

Demo 3:
Multiple Python/Node versions

https://github.com/containers101/docker-based-pipelines-webinar/tree/master/03_multiple_versions

guy.salton@codefresh.io

Data Sharing Between
Pipeline Steps

guy.salton@codefresh.io

Data Sharing

● Steps need to communicate

● Output of one step is input for the
next

● Artifacts (node modules, ruby gems,
maven caches) need to persist

● Test reports/Coverage statistics

guy.salton@codefresh.io

Caches and Artifacts (VM based solutions)

● “Cache” directive

● Need to be setup explicitly

● Different for each build tool

● “Artifact” directive

● Developers defines exact path of
what needs to be archived

● Used for the result of the whole build
or as shared data between steps

guy.salton@codefresh.io

All Steps Share a Volume in Codefresh

guy.salton@codefresh.io

Project is on the Volume

● Project is checked out in the volume

● Volume is also persisted between builds

● Any build tools that use the project folder for
artifacts will gain automatic caching

● For other tools you just need to point their
cache to /codefresh/volume

● There is no need for special “artifact settings”.
Just place files in /codefresh/volume

guy.salton@codefresh.io

Demo 4 – Node Modules

https://github.com/containers101/docker-based-pipelines-webinar/tree/master/04_volume

guy.salton@codefresh.io

Creating Docker Images On-demand

● Create a Docker image as a step

● Use image in a later step

● Maximum flexibility for build context

● Image contents are not known in
advance

● Codefresh is the only platform at the
moment that offers this capability

guy.salton@codefresh.io

Codefresh Plugins

guy.salton@codefresh.io

Plugins in Traditional CI/CD Platforms

● Specific to the platform (vendor lock-in)

● Tied to a specific language (e.g. Groovy)

● Developer needs to learn proprietary API

● Testing and installing them is difficult

guy.salton@codefresh.io

Codefresh Plugins = Docker Images

guy.salton@codefresh.io

Codefresh Plugins

● Not tied to any programming language

● Require only Docker knowledge

● Easy to test, easy to search, easy to store

● Several plugins for Codefresh already available

guy.salton@codefresh.io

Plugin Directory
http://steps.codefresh.io/

Learn how to build your own!

Workshop

github.com/
todaywasawesome/
containers-as-steps

guy.salton@codefresh.io

https://github.com/todaywasawesome/containers-as-steps
https://github.com/todaywasawesome/containers-as-steps
https://github.com/todaywasawesome/containers-as-steps

Summary

● Docker-based pipelines use Docker
images as build steps

● Upgrading tools is easy

● Using multiple versions of the same tool is
trivial

● Can dynamically create build steps

● Codefresh plugins are Docker images

guy.salton@codefresh.io

Signup for a FREE account with
UNLIMITED builds

& Schedule a 1:1 with
our experts at
codefresh.io

Build Fast,
Deploy Faster

Thank You!

guy.salton@codefresh.io

