
Terraform GitOps
How to do Operations by Pull Request

<hello@cloudposse.com>
https://cloudposse.com/
@cloudposse

+

mailto:hello@cloudposse.com

What to Expect

Feelings of OMG

 Aha! Moments...

 Totally Sweet Ops

What is GitOps? (not rocket science)

Why it’s awesome (and you’ll agree)

How to get started… (our way)

And...

 Live demo. . ..
 Q&A

Who is this dude?

Founder of a DevOps Professional Services Company

We’ve pioneered

 Collaborative DevOps for Companies

 (cloudposse.com)

SweetOps Me

(Er
ik O

ste
rm

an)

(100% Open Source)

Infrastructure as a Service

Everything as Code, SDNs

Serverless & Lambdas

Mesh Networking, Operators

Container Management Platforms

CI/CD Everywhere, ChatOps, GitOps DevOps Renaissance
(kubernetes, ecs, mesos, swarm)

DevOps
Complicated Manual Rollouts via the terminal

Poor Audit Trails (huge risk)

Not clear what’s been deployed

Out of date documentation

No one knows how to make changes

The “Industry”

(configuration drift)

Terraform more problems

Deploying infrastructure is not like deploying a web app
 (no easy rollbacks)
 Terraform is more like a database migration tool

Terraform does not automatically rollback on errors

Terraform plans are a best guess of what’s to happen

 Terraform apply will regularly fail

 Terraform apply on merge risks destabilizing master

I test some changes at home...
For Example….

“I ^ it worked...
 on my machine.”

 SWEAR .

Then comes… Launch Day

Production

The Math is Simple

A*B*C*D*E*F = impossible to manage

A = # of tools pinned to versions
B = # of dependencies pinned to versions
C = # of AWS accounts
D = # of project environments (per acct)
E = # of number of developers
F = # of customers (our case)

Too many
permutations to
keep straight

This is why we don’t run things “natively”

So….
Let’s fix this.

Goal:
 Make it Easy to Terraform Stuff.
 (e.g. enable anyone on team to easily spin up RDS Database with Terraform)

Let’s Practice GitOps.

Use Git as a System of Record for the desired state of configuration

 Do Operations by Pull Request for Infrastructure as Code

Then use Continuous Delivery to apply changes to infrastructure
 (basically it’s a CI/CD for DevOps)
 See output from terraform in GitHub comments
 (E.g. “Plan: 23 to add, 2 to change, 15 to destroy.”)

GitOps Objectives

Repeatable - Apply changes the same way every time
 (even your entire stack all at once!)

Predictable - Know what’s going to happen
 (e.g. before you merge)

Auditable - See what was done
 (e.g. when things were applied. see if there were errors)

Accessible - Anyone who can open a PR can contribute

The Solution

https://codefresh.io

Automate Anything
(if it runs in a container)

How We Use Codefresh

Terraform
 Cloud Formation
 Helm → K8S
 Helmfile

Because we can
 run any command

But will it work with...

Terragrunt? YES
 GITLAB? YES
 BITBUCKET? YES
 ANSIBLE? YES

About Codefresh

Yet another CI/CD solution, only better.

1. Stick everything you want to automate into containers

2. String containers together in a pipeline, run them in parallel

3. Trigger pipelines on webhooks, comments, releases, etc.

 Slack Notifications Approval Steps GitHub Comments

Basic Flow Diagram

“Interactive”
 Pull Requests

The “Git Workflow”

Step One: Open Pull Request

Step Two: Review “Auto Plan”

Step Three: Seek Approval

Code Review

Step Four: Deploy Changes

Step Five: Merge Pull Request

 Sneak Peak

That was
easy.

How to get started

1. Signup for Codefresh
2. Add codefresh.yaml to each terraform repo
3. Get back to work (sorry it’s that easy).

Or ask us for help =)

Example /codefresh.yaml.

 init:

 title: Run `terraform init`

 stage: Init

 fail_fast: true

 image: ${{build_image}}

 working_directory: *cwd

 environment:

 - TF_COMMAND=init

 commands:

 - eval "$(chamber exec atlantis -- sh -c "export -p")"

 - eval "$(ssh-agent)"

 - echo "${ATLANTIS_SSH_PRIVATE_KEY}" | ssh-add -

 - terraform init

define step called “init”
give it a title
associate it with a stage of the pipeline
exit on errors
docker image to use
working directory (e.g. terraform code)
environment variables
(used for our github comment template)
commands we should run in this step
export environment from chamber to shell
start an SSH agent
load SSH key so we can pull private repos
run terraform init with s3 backend

Steps can be Entirely Customized.

Init Step

Example codefresh.yaml. (Continued)

 plan:

 title: Run `terraform plan`

 stage: Plan

 fail_fast: true

 image: ${{build_image}}

 working_directory: *cwd

 environment:

 - TF_COMMAND=plan

 commands:

 - set +e -xo pipefail

 - terraform plan | tfmask | scenery | tee plan.txt

 - export TF_EXIT_CODE=$?

 - github-commenter < plan.txt

 - '[$TF_EXIT_CODE -ne 1]'

define step called “init”
give it a title
associate it with a stage of the pipeline
exit on errors
docker image to use
working directory (e.g. terraform code)
environment variables
(used for our github comment template)
commands we should run in this step
shell flags
terraform plan, mask secrets, format it
record exit code of terraform plan
comment back to PR with plan output
exit code of 0 or 2 is success; 1 is error

Steps can be Entirely Customized.

PLan Step

Example codefresh.yaml. (Continued)

 apply:

 title: Run `terraform apply`

 stage: Apply

 fail_fast: true

 image: ${{build_image}}

 working_directory: *cwd

 environment:

 - TF_COMMAND=apply

 commands:

 - set +e -xo pipefail

 - terraform apply | tfmask | tee apply.txt

 - export TF_EXIT_CODE=$?

 - github-commenter < apply.txt

 - '[$TF_EXIT_CODE -eq 0]'

define step called “apply”
give it a title
associate it with a stage of the pipeline
exit on errors
docker image to use
working directory (e.g. terraform code)
environment variables
(used for our github comment template)
commands we should run in this step
shell flags
apply the terraform plan and mask output
(run apply using previous plan)
$PLANFILE ensures WYSIWYG
Comment back on github with outcome
Expect an exit code of zero

Apply Step

Live Demo

1. Add User
2. Open PR
3. Run Plan
4. Seek Approval (or not)
5. Apply
6. Merge

Demo Time!

Our Best Practices

Use Geodesic as our cloud automation shell

Use IAM STS for short lived AWS credentials (not hardcoded credentials)

Use GitHub CODEOWNERS

Use .tfvars for non-secrets

Use SSM Parameter Store + KMS for Secrets

Use scenery for clean output; tfmask to sanitize output

 Atlantis
“Best Practices”

Why do you care?
 Teamwork.

GitOps

Stop living dangerously.
 Start using GitOps.

https://github.com/runatlantis/atlantis

● Practice total transparency in operations
● Enable team collaboration
● Reduce access to environments → increase security
● Increase Productivity, Simplify Maintenance, Ensure Repeatability

Where can I ask questions?

slack.sweetops.com
Join our community!

https://slack.cloudposse.com/

Links

Example Pipeline on GitHub

cpco.io/codefresh-gitops
github.com/cloudposse/tfmask
github.com/cloudposse/geodesic
github.com/cloudposse/github-commenter

https://cpco.io/codefresh-gitops
https://github.com/cloudposse/tfmask
http://github.com/cloudposse/geodesic
http://github.com/cloudposse/github-commenter

Office Hours with Cloud Posse

● Expert Advice — Prescriptive solutions to your questions
● Reduced Time to Market — know your options & eliminate analysis paralysis
● Trusted Partner — who learns your stack and understands your problems

● Recorded Strategy Sessions — Weekly or Biweekly Cadence (30m-1hr)
● Easy Scheduling — via Calendly or recurring events
● Shared Slack Channel — for private communications (~12 hour SLA)

What you get...

Why you want it...

 $500/mo - 2 hours

Hire us. =)
A Totally Sweet DevOps Professional Services Company

100+ Free Terraform Modules github.com/cloudposse

Active Community sweetops.com/slack

Awesome Documentation docs.cloudposse.com

415
 535 86

15

hell
o@

clou
dposse

.com

(free consultation)

