
Integration Testing
with Service Containers

GUY SALTON

Guy
Salton

Solutions Architect

guy.salton@codefresh.io

Agenda

● Introducing service containers

● Checking readiness of a service

● Preloading data to databases

● Launching a custom service

● Summary

● What is integration testing?

https://github.com/codefreshdemo/cf-example-integration-tests

https://github.com/codefreshdemo/cf-example-integration-tests

Unit vs Integration testing

● Testing the interface between multiple software units or modules

● The purpose of the integration testing is to expose faults in the interaction
between integrated units.

● Usually need to launch either the application itself or one or more external
services (such as a database) to run an integration test

What is Integration testing?

Integration Tests with Docker Compose

Compose is a tool for defining and running multi-container Docker applications

Codefresh

The 1st container-native
CI/CD Platform for
Microservices

Container-native

Intuitive & Robust

Enterprise Ready

Flexible Delivery

● You can guarantee the order of service launch and their dependencies (a feature
that is not even offered by vanilla docker-compose)

● You can use a special docker image to preload data to a database or otherwise
initialize a service before tests are run

● The service containers can be attached on the whole pipeline instead of individual
steps

Introducing Service Containers

Checking readiness of a service

● periodSeconds: How often (in seconds) to perform the probe. Default to 10 seconds.
Minimum value is 1.

● timeoutSeconds: Number of seconds after which the probe times out. Defaults to 10
seconds. Minimum value is 1.

● successThreshold: Minimum consecutive successes for the probe to be considered
successful after having failed. Defaults to 1. Must be 1 for readiness. Minimum value
is 1.

● failureThreshold: failureThreshold times before giving up. In case of readiness probe
the Pod will be marked Unready. Defaults to 3. Minimum value is 1

Checking readiness of a service

Demo 1:
 NodeJS and MySQL

https://github.com/codefreshdemo/cf-example-unit-tests-with-composition

https://github.com/codefreshdemo/cf-example-unit-tests-with-composition

● A very common databases in integration tests is the need to preload some test data
in the database.

● Sidecar services have a special setup block for this purpose.

● This way not only you can make sure that the database is up (using the readiness
property explained in the previous section) but also that it is preloaded with the
correct data.

Preloading data to databases

Demo 2:
 Rails and Postgres

Launching a custom service

Launching a custom service

Demo 3:
 Launching a custom image

● Make sure that the hostnames used by your integration tests to access external
services are not hard-coded

● Do NOT use localhost for an API endpoint (for MySQL service at hostname my_db,
then your tests should use my_db:3306 as a target)

● Even better - make the hostname completely configurable with an environment
variable

● Make sure that your integration tests work fine with docker compose locally first

Integration Tests Best Practices

Summary

● Use Docker-Compose syntax in the
pipeline to spin-up service containers

● Add the readiness block to guarantee the
order of service launch and their
dependencies

● Add the setup block to preload your
database with the correct data for the
integration test

Signup for a FREE account with
UNLIMITED builds

& schedule a 1:1 with
our experts at

https://codefresh.io

Build Fast,
Deploy Faster

Thank You!

guy.salton@codefresh.io

