
CI/CD Pipelines for Microservices
Best Practices

DAN GARFIELD

Dan
Garfield

Chief Technology Evangelist

@todaywasawesome

Agenda

1. Why microservices

2. How Expedia approached

microservice CI/CD

3. How we do it at Codefresh

Why Microservices?

Monolith 1 Monolith 2

Why Microservices?

Multiple services with single UI&UXMultiple monoliths with diff. UI&UX

Expedia corporate travel re-architecture

Unified cars UI

Car sortCar search

Cars
(Egencia)Cars (ECT) Cars

(Travelforce)

Booking service

Phone apps.

Moving to Microservices at Expedia

Approach

● Consolidate code bases and

● Build shared libraries for global platform. Ex:

○ Logging service, monitoring service

● Rely on manual integration testing

● Standardize CI/CD pipelines

● Use Maven for modularity

● Migrate to cloud from on-prem

Issues faced

● Geographically distributed

● Tools consolidation was hard

● Too many pipelines as
microservices grew.
(100 pipelines → 1000+)

● Pipelines not modular or
re-usable

● Jenkins master-slave issues

● Copypasta causing bad patterns

● Central team could not keep up

● Plugin upgrade was a nightmare

Moving to Microservices at Expedia

Lessons learned and Recommendations

● CI/CD templates should have been prioritized higher than “business needs”

● Bootstrapping new projects should have been externalized from the microservice and

adding a new microservice should have full pipeline setup once a repo is created

● A modular pipeline approach would ease the pain caused by different versions

● Reusability in CI/CD platform is critical

Single pipeline per
project

Can be
complex/difficult to
be maintain

Usually led by a single
team (anti-devops)

Organizing pipelines for monolithic applications

Scalability issues with microservice pipelines

Does this look
like a plan??

Shared libraries are not the solution.

Requires everyone to use
same version of library

Libraries often rely on each
other in complex ways

Changes have to go to
admins

Leads to big stability
problems

Relies on proprietary API

Organizing pipelines for monolithic applications

How Codefresh does
CI/CD for Microservices

1. Container-based pipelines
2. Shared pipelines
3. Deployment testing

CODEFRESH ARCHITECTURE DIAGRAM

MULTI CLOUD

Each task is built into a
Docker image.

Users can self-serve
these images.

Images DO NOT rely
on each other.

Containers can be
anything: go/node/c++

Container-based pipelines

Huge open source library at steps.codefresh.io

Maintain a single
pipeline

Make microservices
uniform

Change behavior
based on context

Use a single pipeline that operates with context

Triggers carry their context

Codebase

Tests

Docker-compose

Helm chart

...

Dependencies

...

Git checkout

Demo time!

Why Canary?

Usefulness of early testing

Complexity of
Infrastructure

Testing early
becomes less useful
as infrastructure
complexity rises

https://codefresh.io/events/canary-deployment-helm-istio-codefresh/

https://codefresh.io/events/canary-deployment-helm-istio-codefresh/

Summary

Shared pipelines > libraries

Reusable Docker images > Copypasta

Deployment validation with canary

Read the blog post at
https://codefresh.io/continuous-deployment/
ci-cd-pipelines-microservices/

https://codefresh.io/continuous-deployment/ci-cd-pipelines-microservices/
https://codefresh.io/continuous-deployment/ci-cd-pipelines-microservices/

Questions?
Dan Garfield

@todaywasawsomeWant to try it yourself?
Open a FREE account

today at
Codefresh.io

Kostis Kapelonis
@codepipes

https://codefresh.io/scale-codefresh-enterprise-poc/

