(W)

CI1/CD Pipelines for Microservices
Best Practices

Dan
Garfield

Chief Technology Evangelist
(W) codefresh

@todaywasawesome

1. Why microservices
2. How Expedia approached

microservice CI/CD

Age n d a 3. Howwedo it at Codefresh

Why Microservices?

Monolith 1 | Monolith 2

-

1
289800
e e
B
n
] - .
l i & [
. ! r

Expedia corporate travel re-architecture

Multiple monoliths with diff. UI&UX

Cars Cars

Cars (ECT) (Egencia) (Travelforce) |::>

Multiple services with single UI&UX

Unified cars Ul

Phone apps.

Car search

Car sort

Booking service

Moving to Microservices at Expedia

Approach

e Consolidate code bases and

e Build shared libraries for global platform. Ex:
o Logging service, monitoring service

e Rely onmanualintegration testing

e Standardize CI/CD pipelines

e Use Maven for modularity

e Migrate to cloud from on-prem

Issues faced

Geographically distributed
Tools consolidation was hard

Too many pipelines as

microservices grew.
(100 pipelines — 1000+)

Pipelines not modular or
re-usable

Jenkins master-slave issues
Copypasta causing bad patterns
Central team could not keep up

Plugin upgrade was a nightmare

Moving to Microservices at Expedia

Lessons learned and Recommendations

e CI/CD templates should have been prioritized higher than “business needs”

e Bootstrapping new projects should have been externalized from the microservice and
adding a new microservice should have full pipeline setup once a repo is created

e A modular pipeline approach would ease the pain caused by different versions

e Reusability in CI/CD platform is critical

Organizing pipelines for monolithic applications

° ° ° : Pipeline 1
Slngle pipeline per S e i
project Ss———

T aine T
Can be E step step step
complex/difficult to ¥ e e
be maintain S

: Pipeline 3

i step step step

Usually led by a single
team (anti-devops)

————————————————————————

Git Repo 1

Git Repo 2

Git Repo 3

Scalability issues with microservice pipelines

; s Does this look
I e like a plan??

E l step H step H step l j Git Repo

3 monolithic
applications

Each application split to
4 microservices

Shared libraries are not the solution.

- ——————

N —————

Shared
pipeline
segments

Pipeline 1

Pipeline 2

Pipeline 3

library A

library B

library A

—_— library C
posssssossessssees :
—> | custom i

—

prsssmeeennneeas
i custom

library C
premmmneeaanneeaas
i custom

— library B

Organizing pipelines for monolithic applications

I
I
Requires everyone to use i
same version of library \

Libraries often rely on each
other in complex ways

Pipeline 1

Changes have togo to

admins
Pipeline 2

Leads to big stability
prObIemS Pipeline 3 library A pesmm———

— library D — 1 custom

Relies on proprietary API

How Codefresh does
CI1/CD for Microservices

1. Container-based pipelines '
2. Shared pipelines
3. Deployment testing

codefresh

CODEFRESH ARCHITECTURE DIAGRAM

Web ui

Web hook

Triggers

Github
GitLab

Bitbucket

TFS*

Dockerhub

CRON

2

MICRO-SERVICES

Image Meta Data Manager

Main
DB

Authentication

Monitoring

Docker Service

Template Manager

RBAC authorization

Pipeline Manager

Scheduler

External
Services
(SaaS)

Secure
—

Channel

RUNTIME ENVIRONMENTS

Kubernetes

Multi-tenant
Dedicated Cluster
Customer provided

Pipeline Engine

DIND sandbox

DIND sandbox

DIND sandbox

Blob
Storage

& | &

CF Helm Internal Docker
Repository Registry

MULTI CLOUD

INTEGRATIONS
*‘ Docker hub
Lo JCH N

Kubernetes
0D e a

R Hel
elm
N
Email /Slack
Notification

Build
logs/reports

m Helm client
{
»

Docker
Daemon

Container-based pipelines

Each task is built into a
Docker image.

Users can self-serve
these images.

Images DO NOT rely
on each other.

Containers can be
anything: go/node/c++

Docker
Build Context

Codefresh Pipeline

..

step 2 %
step 3 - :

container 1 step 1 -
container 2
container 3
container 4 step 4 #

Wefresh/volume

(\1) codefresh

CATEGORIES

FEATURED
NOTIFICATIONS
GIT

UTILITY
SECURITY

BUILD
DEPLOYMENT
ISSUE TRACKING
SERVELESS

SECRET
MANAGEMENT

STORAGE

Create a Step

FEATURED

</>

freestyle

Run freestyle commands on top
of a docker image

& official

push

Push a docker image to a registry

& official

‘—1’,,‘(

pending-approval
Pause a running build until an
approve or deny action

& official

°o
B
codefresh-run

Run a pipeline by id or name and
attach the created build logs

Q Official

&

build

Build a Docker image

& official

deploy
Deploy

0 Official

Huge open source library at steps.codefresh.io

composition

Run a docker-compose

& Official

&

git-clone

Clone a git repository

& official

Find Steps

- 4

launch-composit

Run and externaly expo
docker-compose

£ official

k8s-blue-green-
deployment

Perform blue/green dey:
on a Kubernetes clustei

Use a single pipeline that operates with context

Maintain a single
pipeline

Make microservices
uniform

Change behavior
based on context

Trigger 1

Trigger 2

Trigger 3

Trigger 4

Pipeline

step step step

S ————————————————————— — -

. N
(Trigger N Microservice N
N

—— s — — e e

Triggers carry their context

Trigger 1

Git checkout

Tests

Docker-compose

Dependencies

Helm chart

Codebase

Pipeline

step step step

Demo time!

Why Canary?

Usefulness of early testing

Testing early
becomes less useful
as infrastructure
complexity rises

Complexity of
Infrastructure

https://codefresh.io/events/canary-deployment-helm-istio-codefresh/

https://codefresh.io/events/canary-deployment-helm-istio-codefresh/

Summary

Shared pipelines > libraries '
Reusable Docker images > Copypasta

Deployment validation with canary

codefresh

Read the blog post at

https://codefresh.io/continuous-deployment/ci-cd-pipelines-microservices/
https://codefresh.io/continuous-deployment/ci-cd-pipelines-microservices/

(W)

Questions?

Dan Garfield
@todaywasawsome

Open a FREE account
today at

Codefresh.io ﬁ
&

Kostis Kapelonis
@codepipes

https://codefresh.io/scale-codefresh-enterprise-poc/

